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We present a finite-element method for time-dependent incompressible free surface fluid 
flow problems described by the Navier-Stokes equations. The elements chosen have 
dimensions in both space and time, and the resulting system of equations is block-tridiagonal 
and lends itself to solution by standard techniques. In the present article we restrict our 
attention to two-dimensional problems although three-dimensional problems may be solved by 
a straightforward generalization. The method is essentially an implicit time stepping technique 
and therefore stable even for relatively large time steps. With this choice of elements, the 
method is completely adaptive to the changing nature of the solution. An iterative procedure 
is used to find the position of the free surface; this procedure is found to be rapidly convergent 
determining accurately the shape of the free surface within a few iterations. Numerical results 
are given for the problem of entrainment of fluid by a vertically moving plate, which has 
applications to the chemical engineering problems of the free coating of metals. We also 
consider the problem of circulation flow in a rectangular channel. 

I. INTRODUCTION 

The numerical solution of the Navier-Stokes equations for problems with a free 
boundary is complicated by the need to trace accurately the path in time of the free 
surface. Problems of this type have been solved by a number of authors (see, e.g. 
[l-4]) by using finite-difference techniques incorporating a system of marker 
particles whose movements, when recorded, determine the position of the free surface, 
or by using a finite-difference approximation of the Lagrangian form of the 
Navier-Stokes equations, or by using a combination of the above two. While a 
number of variations of these techniques have been used to solve a wide variety of 
problems, methods using marker particles have the disadvantage of requiring 
considerable storage. Recently, finite-element methods have been used for slowly 
changing and time-independent free surface flow problems [5, 61; when formulated in 
this way, the free surface problem takes a very elegant and concise form with the 
natural boundary condition incorporated within the equations in a straightforward 
manner. 

Jamet and Bonnerot [7-91 have considered one-dimensional problems and recently 
the two-dimensional Stefan problem using space-time finite elements. In the present 
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article we consider flows described by the more complicated two-dimensional 
Navier-Stokes equations, although there is in principle no difficulty in applying the 
method to the fully three-dimensional equations. The elements we use have 
dimensions in both space and time, and, with the appropriate choice of solution 
vector, the resulting system of equations is block-tridiagonal. 

One problem considered in this paper is the entrainment of fluid, by a vertically 
moving plate, from a bath of fluid of finite depth and the consequent formation of a 
thin film of fluid on this plate. Such problems concerning the free coating of plates 
are of interest to chemical engineers [ 10, 111 and solutions to these problems have 
generally involved making assumptions about the nature of the flow in various 
regions of the fluid and then solving the steady-state equations to determine the 
thickness of the film. We have considered the initial value problem and have traced 
the formation of the film on the plate by solving the complete Navier-Stokes equation 
using the finite-element method to be considered below. There exist documented 
experimental results for this problem ([lo] or [ 111) and our solutions are in good 
agreement with these and also the results from the approximate steady-state 
equations. 

The other problem considered in this paper is that of circulation flow in a 
rectangular channel for which there exists a steady-state solution. 

Results for both these problems are presented in Section V. 

II. GALERKIN FORM OF CONSERVATION EQUATIONS 

In Cartesian components the conservation laws for time-dependent incompressible 
fluid flow may be written as 

(2.2) 

where ui is the velocity component in the direction of xi, 1;: the body force 
component, and crij the stress component. For Newtonian flow the following 
constitutive equation applies, 

where p is the pressure and Y is the kinematic viscosity of the fluid. 
If we use (2.2) and (2.3), then (2.1) may be rewritten as 

$+& u,u,+P~,,-~~ ( 1 =fi. 
J J 

(2.3) 

(2.4) 
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Conditions on the velocity and stress at a material boundary provide boundary 
conditions for these equations. Continuity of normal and tangential velocities is 
applied at a fluid solid interface and continuity of stress with the appropriate 
allowance for surface tension at a fluid-fluid interface, that is, at a free surface. For 
the case of a liquid-gas interface, to be considered here, the last condition can be 
expressed as 

ufjnj=Y (++$-) n,, 

where R, and R, are the radii of curvature of the interface in any two orthogonal 
planes containing the outward normal n with components ni, and y is the coefficient 
of surface tension. The authors have found that a finite-element approximation of 
(2.2) and (2.4) using space-time elements in the manner of Bonnerot and Jamet [7-91 
allows for the easy determination of the position of the free surface and also incor- 
porates the natural boundary conditions in a straightforward manner (see below). 

Furthermore, because the space domain is continually changing shape, i.e., the 
nodes move with time in accordance with the moving boundary, a finite-difference 
mesh would be irregular and hence a finite-difference formulation would be very 
complicated. The finite-element approximation is based on the weak form of Eqs. 
(2.2) and (2.4). 

Let A(t) be the spatial region that the liquid occupies at time t, and D the 
space-time domain. 

D= {(~~,t):(~~)EA(t),t>o~. 

Then the weak form of the conservation equations may be written as 

(ujui+P6ij-V$)) dV=J Q)frdV, 
J D 

5 lg%!4=0, AU) axj 

(2.6) 

where the arbitrary functions 4 and w  are required to be measurable in the Sobolev 
sense and 4 vanishes on that part of the boundary of A(t) which satisfies the no-slip 
condition. Solutions u, and p are required to have measurable derivatives of order 2 
and 1, respectively. 

From a computational viewpoint a more useful weak form is the Galerkin form 
which is derived from (2.6) by the use of Green’s theorem. This form requires 
minimum continuity of the solutions ui and p. 



FREE SURFACE FLOW 285 

i 

D 

~ (~-~ (UIIIi +P6u-"~)) dV 

J i 

+ UjUi +psij-V~) nj dS dt 
i 

= #idV, i D 
P-8) 

where the integration in s is over the free boundary of A(t), and C(t) is the domain 

C(t) = {(Xi, t): (Xi) E 6A,(t), t > O}, 

where &l,(t) is the free boundary of A(t). Here ( is required to have measurable first 
derivatives and a solution is sought such that ui has measurable first derivatives and 
p is measurable. The natural boundary condition on the free surface is incorporated 
by the replacement of 

( psij-v~ nj 
J 1 

from (2.3). 
Equations (2.7) and (2.8) form the basis of the finite-element method to be 

considered in the next section. 

III. GALERKIN APPROXIMATION 

At this stage it is assumed that the solution to the set of conservation equations is 
given at some time t” and that the solution at some later time t”+’ is desired. For 
simplicity we restrict ourselves to plane flow and in particular to plane flow 
constrained to move within the region 0 <x <X, y > 0 (see Fig. 1) although what 
follows can be easily generalised. Hence D” is defined to be the region in space-time 
containing the fluid between the times t” and t”+ i (see Fig. 2). 

Then (2.7) and (2.8) may be rewritten as 

1  ̂A(t”+,) w 2 dA = Oy 
J 

(3.1) 
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= gi!dK J D” 
(3.2) 

where 

C” = ((x,, t): (Xi) E &4,(t), t” f t ( t”+‘}. 

To approximate the problem (3.1) and (3.2) with the appropriate boundary and 
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FIG. 1. Fluid-tilled domain A(P). 

FIG. 2. The space-time domain D”. 
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\ 
P” I+p 

FIG. 3. Triangular prisms KY,+, and KY;,,, + , used to approximate D*. 

initial conditions, we approximate the region D* by a set of finite elements, in 
particular a set of triangular prisms designated by K;,$, and KY,; (see Fig. 3) whose 
nodes are designated by P&,, for 0 < IQ L, 0 < m <AI. For flexibility both the x- 
coordinate and y-coordinate of each of the nodes may be varied at each time level in 
any appropriate manner which makes allowance for the changing shape of the fluid- 
filled region. For our purposes and because it simplifies the algebra, we choose to 
make the,x-coordinate of each node independent of the y-coordinate. Hence the nodes 
Pi’,, will have coordinates of the form (see Fig. 4) 

For some problems it may be desirable to have greater flexibility in the choice of the 
nodes of the elements and hence to allow the x-coordinate to be dependent on the y- 

n 

LIl+, 
__----_-_ Cm+1 

” 
&,*, _ _ _ _ _ - - - - - - - - 

9 

Pfl 

rl’ 
I+l,m+l 

y;m ____--__ 
n 

yi4.m 
_ __ __ _- -- + _- - - p , Ifl.rn 

FIG. 4. The coordinates of the nodes Pj’,, , P;+ , ,m, P;., + , , and P;+ , ,m + , of the triangular bases of 
K;: and Ku- ,+l,m+l at t=t”. 
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coordinate. In such cases (3.4) below would be replaced by an equation of the form 
(3.5) with y replaced by x. Clearly the triangular bases of these prisms are an approx- 
imation to the regions A(P) and A(t”‘i). Denote by 6K$, the triangular base of KY,: 
at the time t”+‘. Equations (3.1) and (3.2) may now be approximated by the sum.of 
integrals over Kf,$ and KY,; and their bases. For free boundary problems these 
elements will change in shape and so to facilitate the evaluation of integrals over 
these elements, parametric transformations are introduced which map them onto the 
standard prism K+ (see Fig. 5). 

From geometrical considerations we construct the parametric transformation 
(t, x, y) -+ (r, /I, r) from KY,; to Kt in the form 

t=(l--)t”+@“+‘, (3.3) 

x=(1 -P)x;+[+/?x;t’f, (3.4) 

Y = (1 - B - r)Y;,‘m’ + PY;,‘l”., + Ilvl,‘,: 1; OGt.9 B< 1, rl< 1 --PI (3.5) 

where the following convention has been used 

Similar transformations exist for KY,; onto Kt with the nodes P;+ i,,, and Pi’,+ 1 
replaced by the nodes P;- , ,m and Py,, _ i in the above equations. 

FIG. 5. Standard prism K+. 
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The inverse transformations are 

289 

r= 
t - t” 

ptl -tt” 3 

P= x - .;+s 
ntl_ nil’ 

x1+1 Xl 

rl = Y -PYay;,‘:.m - (1 -P)YZ 

YZ’,! 1 -Y$” * 

(3.7) 

(3.8) 

The coordinates (<, /I, 9) of the nodes of Kt are as shown in Fig. 5. 
The subdivision of the domain D” into a set of finite elements reduces the original 

problem to one which is finite dimensional and for which the values of velocity and 
pressure are required only at the nodes of the element. In terms of the nodal values, 
the Galerkin approximation for the solution of (3.1) and (3.2) is taken to be of the 
form 

L-l M 

(3.9) 

(3. IO) 

where 

z&(t) = (1 - l) ujf; + &.4jf;+‘, (3.11) 

PI,&) = (1 - GP;,, + t?qf,’ 
= n+l Ph (3.12) 

and uff;, p;t,, are the nodal values of Gi and ~9 at time t”; $‘Vm and I#*~ are inter- 
polating functions and are assumed to form a complete set of functions over the fluid- 
tilled space; and vi are functions satisfying the no-slip boundary conditions and are 
zero elsewhere. The Galerkin approximation satisfies 

(3.13) 

(3.14) 
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The interpolating functions d’*“’ must be chosen to preserve continuity of velocity 
between the elements. This is the minimum continuity requirement on the velocity 
and is necessary because of first-order derivatives in Eq. (3.2). No such continuity 
requirement is necessary for the interpolating functions I#*~. In particular, d’*” are 
chosen to be the set of pyramid functions which within each element are linear in q 
and p 

l=a, m=b 
otherwise. 

The I,&~ are chosen to be the set of step functions: 

1.m = 

I 

1, (x, y) E dK;_+, ,m - 1 or 
w  

LX;,; 
0 otherwise. 

(3.16) 

The exact form of #r*m and w’*~ can be better seen by considering the approximation 
for u,, p in the elements KY,: and K;,;. Thus in PC;,; 

ui = (l -P - tt) u?,‘m’ + P”;,‘f,m + ttG,‘,f+ 19 (3.17) 

ntl P=Pl+l,m+l7 (3.18) 

pm= (1 -B-q), (3.19a) 

4 
l+l,m _ 

--/A (3.19b) 

d I,m+ 1 _ - 45 (3.19c) 

v/ I+l,mtl, 1. (3.20) 

Similar approximations exist in K&, with nodes P;+ l,m and Pi’,+ i replaced by 
PiLl,, and P:,m-l, respectively, in (3.17) and with p;,+/,,, 1 replaced by p;,‘,’ in 
(3.18). 

Equations (3.13) and (3.14) provide a system of equations for which we can solve 
for ulf: and pi’, subject to the initial and boundary conditions. We need one more 
equation to determine the position of the free surface. This is furnished by the 
equation 

(3.21) 

where y, is the height of the free surface above the x-axis, u is the velocity on the 
surface in the x direction, and u is the velocity in the y direction. Again we choose to 
work with the integrated weak form of this equation. 

(3.22) 
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The Galerkin approximation for y, is then given by 

Yh =9/l = i !wY,.MW9 
I=0 

where 

Ydf) = Yzf5 
and 

qqx) = sl, = I 
l=a 
otherwise. 

The reciprocal of the radius of curvature, given by 

d2yddx2 -- 
If( - (1 + [dy,,/u!x]*)“* ’ (3.23) 

is approximated at each surface node PZM using the following finite difference 
approximations for derivatives of y, at each node. 

(3.24) 

d’y,, 2 
- = (Ax; + Ax;- 1) * dx 

(3.25) 

where 

Ax; =x;+~ -x;, l=O,L. (3.26) 

IV. NUMERICAL QUADRATURE AND COMPUTATIONAL TECHNIQUES 

In this section we consider the quadrature formulas used to evaluate the integrals 
that occur in (3.13), (3.14), and (3.22) and the computational techniques involved in 
solving the resulting system of finite-difference equations. 

Integrals over KY,& and Kf,; are converted by the parametric transformation 
introduced in Section III into integrals over the standard element K+. 
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where Y is some arbitrary function, !I@ the Galerkin approximation for Y, and J;,i is 
the Jacobian of the transformation 

Rather than evaluate the integral on the right side of (4.1) as it stands 
following quadrature formula for integrals over K+ 

~d~dpd~=~[~(0,0,0)+~(1,0,0)+~(0,1,0)+~(1, 

+ @(O, 0, 1) + @(L 0, 111, 

we use the 

130) 

(4.2) 

where @(O, 0,O) is the nodal value of the integrand at node (0, 0,O) of the element 
K+. Similar simple quadrature formulas are used to evaluate integrals over 6K;,+,, 
6Kf.i and over boundaries of D". 

For Eq. (3.14) with test function @” integrals over D" reduce to the sum of 
integrals over the neighbouring elements with the node P;,‘,’ in common (see Fig. 6). 
Similarly for Eq. (3.13) with test function I#*~ integrals over A@“+ ‘) reduce to the 
sum of integrals over 6K;,+, and LX;;, ,m + r (see Fig. 7). Equation (3.14) is non-linear, 
so some iterative procedure is in general necessary for the solution of the system of 
equations generated by the above quadrature formulas. However for the low 
Reynold’s number flow problems, to be considered here, the equations may be 
linearised by approximating the inertia terms at t n + l by their values at tn. Then if we 
choose as our solution vector 

where 

x”+’ = ( Jq”), Z=l, L-l, 

Uf+ml 
Xntl- I - p;,',' 7 

i i 

m= l,M, 
al’ 

K 
n- 
l,m+l 

“+ 
K 

nt 
Ll,nl K lb 

FL3 

“- n- 
K Ih 

K l+t,rr 
n+ 

K 
I,m - , 

FIG. 6. The elements that have the node P;,+m‘ as a common node. 
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n- 
K I+t,m+ I 

c, 

K 
n+ 
I,m 

FIG. 7. Elements for which I’*” is non-zero. 

the system of equations takes the form 

MX -b, n+1- n 
(4.3) 

where M is a block-tridigonal matrix and b contains the forcing terms and infor- 
mation about the flow at time t”. Although this choice of arrangement of the 
equations does not yield a symmetric matrix, it has the advantage that the diagonal 
blocks in M are only of order 3M x 3M so that, if a standard block elimination 
technique with Gaussian elimination is used, there is only of the order of 
+(L - 1) M3 operations necessary to solve for X”+ ‘. 

Clearly the choice of the elements Ki+ and Kk- is dependent on the position of the 
free surface which in turn is dependent on the values of the velocity on the free 
surface at time t”+ l. Hence an iterative procedure is necessary. The system of 
equations derived from (3.2) takes the form 

,(,“+‘) y”+’ = c”, (4.4) 

where N is a tridiagonal matrix which depends on the solution vector Xn+r, y”+’ is 
the vector (y;,$‘), d an c contains terms determined at t”. Equations (4.3) and (4.4 
are solved iteratively in the following manner, 

where 

NW n+l(v))y ) n+l(u+l) =c” 

WY 
n+l(u+ 1) xn+ l(v+ 1) = p 

1 

(4.5 
3 v = 0, l,..., 

xn+ l(O) = X” 

For the problems we considered it was found that this iterative scheme gave 
convergence to five significant figures in two or three iterates. 
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V. NUMERICAL RESULTS 

In this section we present results for the entrainment and the circulation problems. 
The cases presented are those that gave the greatest displacement of the free surface 
from its original configuration and hence best illustrate the power of this method. 

Both of the problems were impulsively started and hence displayed Rayleigh 
boundary layer effects. The propagation of this boundary layer restricted the size of 
the initial time steps in as much as it was not possible to choose an initial time step 
which was so large that the Rayleigh layer could propagate through the entire fluid 
region. However, once initiated, there was essentially no restriction on the size of the 
time step used due to the implicit nature of the time-stepping algorithm. 

In the entrainment problem, we consider the flow generated by the withdrawal of a 
vertical plate from a fluid bath (see Fig. 8). Initially the fluid is stationary and 
occupies the region 0 < x ( L, 0 < y < d. The top surface is free. The boundaries 
x = L and y = 0 are stationary and the boundary x = 0 moves upward with a speed 
U. We used as non-dimensional variables, 

where g is the gravitational constant. 
The three non-dimensional parameters that arise due to this scaling are the 

Reynold’s number, 

Re=Vd 
v  ’ 

the Froude number, 
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FIG. 8. Entrainment problem. 

X-AXIS 

FIG. 9. Plot of the free surface for the entrainment problem with Re = 0.1, y  = 0, Fr = 2.0, n = 0.1, 
t = 5.5, AC = 1.0, with stream lines (a)-(g) corresponding to -0.02, 4.016, -0.01, -0.006, -0.003, 
-0.001, -0.0001, respectively. 

and the capillary number, 

The theoretical treatments of this problem by Spiers et al. [lo] and Gutfinger er al. 
( 111 have been based on a one-dimensional boundary layer approximation of the flow 
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FIG. 10. Plot of free surface for t = 20.5. 

FIG. 11. Plot of free surface for t = 38.5. 
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equations in the region of the adhering film and also the existence of a “static 
meniscus” region to describe the shape of the film near the bath surface. Their 
theoretical results show good agreement with their experimental results for low values 
of the capillary number Ca. However, as they themselves acknowledge, the above 
assumptions are invalid for large values of Ca, and there exists a discrepancy between 
their theoretical and experimental results for Ca > 2. We have therefore considered 
two cases for this problem with values of Ca less than two and much greater than 
two, respectively. 

The results presented in Figs. 9-l 1 are for the case Re = 0.1, Fr = 2.0, y = 0 and 
aspect ratio n = 0.1 (n = d/L). These diagrams show the development of a film of 
liquid on the vertically moving wall and illustrate the laminar nature of the flow in 
this region. They also show that the effects of the entrainment is localized in a region 
immediately adjacent to the moving wall and show the absence of any circulation of 
the flow within the bath itself. The region of constant film thickness also appears to 
form very close to the bath surface (y z 1.2) and its thickness is of the order of 0.05. 

The results for the second case with Ca = 1.0, Re = 1.0, Fr = 0.01, and n = 1.0 are 
depicted in Figs. 12-14. Initially the presence of surface tension appears to create 
circulation effects in the region of the bath near the moving wall (Fig. 12). This effect 
then dissipates with the formation of a cell of circulation in the far corner of the bath 
away from the moving wall. Again a region of constant film thickness is beginning to 

X-AXIS 

FIG. 12. Plot of the free surface for the entrainment problem with Re = 1.0, Fr = 0.01, n = 1.0, 
Ca = 1.0, t = 0.51, At = 0.01 - 0.1, with streamlines (a)-(e) corresponding to -0.09, -0.06, -0.03, 
-0.009, -0.003, respectively. 

58 l/39/2-4 



298 FREDERIKSEN AND WATTS 

FIG. 13. Plot of free surface at t= 2.21 with streamlines (c), (d), and (e) as in Fig. 12 and with 
additional streamlines (f)-u) corresponding to -0.05, -0.055, -0.058, $0.00005, +O.OOOOl, respec- 
tively. 

form on the moving wall, although this time at a greater distance from the surface of 
the bath (y z 2.5). The thickness of the film is of the order of 0.08 (see Fig. 14). 
These results are in marked contrast with those for zero surface tension effects. 

As a measure of the accuracy of this method of solution we compared our results 
with those predicted by Spiers et al. [lo] for an infinite sheet of entrained fluid with 
Ca = 1.0. The dimensionless thickness h, of such a sheet can be determined using 
their theoretical and experimental results. It can be shown to be 

where To is a parameter dependent on Ca and can be determined from the 
experimental results to be equal to 0.75. Hence the estimated value of ho is 0.075. 
This is consistent with the results presented in Figs. 12-14. 

For both cases the method proved to be highly stable even when the aspect ratios 
of the elements became extremely large (see Figs. 15-17), in fact the only limiting 
factor was the introduction of inaccuracies into the solution due to the relatively few 
number of elements (200) used and the simple interpolation formulas employed. 
These problems could be easily overcome by the introduction of a less sparse 
covering of the space-time domain. In addition the iterative procedure employed in 
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FIG. 14. Plot of free surface at t = 4.3 1 with streamlines (c), (d), (e) and (f) as in Fig. 13 and with 
additional streamlines (kt(p) corresponding to -0.045, -0.04, -0.033, -0.02, +O.OOOl, +O.C006, 
respectively. 

FIG. 15. Finite element mesh for the entrainment problem with 
Ca = 1.0, and I = 0.5 1. 

Re = 1.0, Fr = 0.01, n = 1.0, 
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4. 

3. 
: 

FIG. 16. Finite-element mesh at t = 2.21. 

FIG. 17. Finite-element mesh at t = 4.3 1. 
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this method gave excellent convergence to five decimal places within two or three 
iterates for time steps varying from 0.01 to 1.0. 

In the circulation problem, we consider the flow generated in the bath by the 
motion of the horizontal wall y = 0 (see Fig. 18). Initially the fluid is stationary and 
occupies the region 0 < x < L, 0 < y < d. The top surface is free and the boundaries 
x = 0 and x = L are stationary and the boundary y = 0 moves horizontally with a 
speed U. 

FIG. 18. Channel circulation problem. 

,.h, ; . ; 

1. 

,/ 
. . 

0 ‘1 \ 

./ // 

i 

i 

FIG. 19. Plot of free surface for the circulation problem with Re = 1.0, Fr = IO”, n = 1.0, I= 0.01, 
and Al = 0.01 - 0.1 with streamlines (at(f) corresponding to 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 

respectively. 
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FIG. 20. Plot of free surface at I= 1.75 with streamlines (a)-(f) as in Fig. 19 and with additional 
streamlines (g)-(j) corresponding to 0.03, 0.05. 0.075, 0.095, respectively. 

FIG. 21. Finite-element mesh for the circulation problem at t = 0.01. 
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We used as non-dimensional variables, 

u’=U 
u’ 

L 
II’= -&y v, 

( 1 

The results are presented graphically in Figs. 19 and 20 for the case Re = 1.0, 
Fr = 104, y = 0 and aspect ratio it = 1.0. Our results indicate that a steady-state 
solution exists for this problem. 

As a test of the general nature of our solution we can compare our results with 
those of Pan and Acrivos [ 121 and Torrance et al. [ 131 for the cavity-driven problem. 
Although there are important differences between the present free surface problem 

FIG. 22. Finite-element mesh at t = 1.75. 
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and the cavity-driven problem, they are similar in the sense that away from the free 
surface the streamlines have a similar nature. 

Figure 19 gives a plot of the stream function immediately after the liquid is set in 
motion. Subsequently, as the Rayleigh layer propagates through the liquid, the free 
surface is progressively distorted until a standing wave form is set up as illustrated in 
Fig. 20. The solution at this stage was unchanging in the third decimal place and 
appears to have reached a steady state. Figures 21 and 22 show the initial and final 
mesh configuration, respectively. 

Again convergence was excellent with five decimal agreement after two or three 
iterates (dt = 0.01 - 0.1) and again, except for the initial stages, there was no 
effective restriction on the size of the time step. 

VI. CONCLUSION 

Because of the highly stable and convergent nature of this method, even for very 
large time steps, the authors feel that it will prove a useful and powerful tool in the 
solution not only of free boundary flow, but generally of time-dependent fluid 
dynamical problems. The authors are at present looking at the adaptation of this 
method to more difficult problems, such as those involving three dimensions. 
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